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Abstract

The present study concentrates on the effects of viscous dissipation and the yield shear stress on the asymptotic

behaviour of the laminar forced convection in a circular duct for a Bingham fluid. It is supposed that the physical

properties are constant and the axial conduction is negligible. The asymptotic temperature profile and the asymptotic

Nusselt number are determined for various axial distributions of wall heat flux which yield a thermally developed

region. It is shown that if the asymptotic value of wall heat flux distribution is vanishes, the asymptotic value of the

Nusselt number is zero. The case of the asymptotic wall heat flux distribution non-vanishing giving a value of the

Nusselt number dependent on the Brinkman number and on the dimensionless radius of the plug flow region was also

analysed. For an infinite asymptotic value of wall heat flux distributions, the asymptotic value of the Nusselt number

depends on the dimensionless radius of the plug flow region and on the dimensionless parameter which depends on the

asymptotic behaviour of the wall heat flux. The condition of uniform wall temperature and convection with an external

isothermal fluid were also considered. The comparison with other existing solutions in the literature in the Newtonian

case is analysed.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

Laminar forced convection of a Bingham plastic in

circular ducts is of great practical interest since one finds

them in various industrial applications such as chemical

food, polymers, cosmetics and pharmaceutical process-

ing industries.

The laminar forced convection of Newtonian fluids

following in circular ducts has been widely studied and

the significant results obtained in this field are summa-

rized by Shah and London [1]. The temperature field and

the local Nusselt number in the thermal entrance region

is evaluated by Quaresma and Cotta [2] with sinusoidal

and exponential wall heat flux variation, in the case of

negligible viscous dissipation and axial heat flux con-

duction in the fluid. The same work was carried out by

Barletta and Zanchini [3] with power-law wall heat flux

variation. In Ref. [4], a sufficient condition much broader

than those previously found in the literature has been

determined for the existence of fully thermally developed

region. Under the same assumptions, Piva [5] proposed

an analytical method based on confluent hypergeometric

functions to predict the fully developed Nusselt number

in the case of exponential wall heat flux.

The effect of viscous dissipation in the thermal en-

trance region was examined in several research works.

One mentions those of Basu and Roy [6] for isothermal

and constant heat flux boundary conditions. In the case
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of isothermal wall, the asymptotic value of the Nusselt

number is Nu1 ¼ 48=5, whereas in the case of constant

wall heat flux, this value remains lower than 4.36.

Zanchini [7] evaluated analytically the asymptotic tem-

perature field and the asymptotic value of the Nusselt

number for many wall heat flux distributions.

For non-Newtonian fluids, the results concerning the

heat transfer by forced convection for power-law fluids

in circular ducts are illustrated in Refs. [8,9]. For fully

developed laminar flow, the effect of viscous dissipation

is analysed by Barletta [10] for many axial distribution

of wall heat flux which ensures the existence of a ther-

mally developed region. Recently, Olek [11] obtained a

general analytical solution for laminar forced convection

in the thermal entrance region of a circular or parallel-

plate duct with including axial heat conduction, con-

vective boundary conditions and for fully developed

velocity profile.

The problem of heat transfer for a Bingham plastic in

laminar tube flow was studied by Johnston [12] by using a

method based on the Sturm–Liouville transform theory.

He concluded that the axial conduction can be neglected,

if the Peclet number is higher than 1000. Vradis et al. [13]

analysed numerically the heat transfer problem with

viscous dissipation and without axial conduction, in the

case of uniform wall temperature. Recently, Min et al.

[14] studied analytically the fully developed and the

thermally developing regimes of a Bingham plastic by

employing the Frobenius method and the separation of

variables by taking into account the viscous dissipation

and the axial conduction with uniform wall temperature.

To our knowledge, no solution of the problem of

forced convection with viscous dissipation in a circular

duct of a Bingham plastic with no-uniform wall heat flux

is available in the literature.

The aim of the present work is to apply the approach

employed in Ref. [10] to the case of fully developed

laminar forced convection in circular ducts for a Bing-

ham plastic with viscous dissipation and negligible axial

heat conduction in the fluid. Both the asymptotic Nus-

selt number and the asymptotic profile temperature are

obtained for many axial distributions of wall heat flux

which yield a thermally developed region. The effect of

the dimensionless radius of the plug core and the

Brinkman number are presented and compared with

those obtained in previous works. The cases of constant

wall temperature and convection with an external iso-

thermal fluid were also considered.

2. Analysis

Let us consider a Bingham plastic of constant phys-

ical properties flowing in a circular duct of radius r0,

Nomenclature

a ratio of yield shear stress to wall shear stress

Bi Biot number, her0=k
bðRÞ solution of Eqs. (34) and (35)

BrðX Þ local Brinkman number, ðlpu
2
mÞ=ð2r0ÞqwðxÞ

BrðsÞ1 singular value of Br1 evaluated by Eq. (28)

C dimensionless constant employed in Eq. (33)

cp specific heat at constant pressure

f function of R employed in Eq. (14) or in Eq.

(22)

g arbitrary function of r and x
he convection coefficient with a fluid external

to the tube wall

Nu Nusselt number, 2r0qw=½kðTw � TbÞ�
Pe Peclet number, 2r0umqcp=k
qw wall heat flux

r radial coordinate

r0 radius of the tube

R dimensionless radial coordinate, r=r0
R0 dummy integration variable

T temperature

T0 inlet temperature distribution

Tf reference temperature of a fluid external to

the tube wall

u velocity component in the axial direction

um mean axial velocity

U dimensionless axial velocity, u=um

x axial coordinate

X dimensionless axial coordinate, x=2r0Pe

Greek symbols

b dimensionless parameter defined in Eq. (30)

k thermal conductivity of fluid

lp plastic viscosity

x dimensionless parameter, 1� ð4a=3Þ þ ða4=3Þ
q fluid density

sc yield shear stress

sw wall shear stress

h dimensionless temperature, kðT � T0bÞ=lpu
2
m

hf dimensionless temperature, kðTf � T0bÞ=lpu
2
m

H dimensionless temperature, ðTw � T Þ=ðTw �
TbÞ

Subscripts

b bulk quantity

w wall condition

1 quantity evaluated for X ! þ1
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submitted to a variable axial wall heat flux qwðxÞ. The

flow is supposed to be steady, laminar, fully developed

and axisymmetric.

The fully developed velocity profile for a laminar

pipe flow of a Bingham plastic is given as follows [14,15]:

uðrÞ ¼
um

2 1� r
r0

� �2

� 2a 1� r
r0

� � !

1� 4a
3
þ a4

3

if rc 6 r6 r0

um

2ð1� aÞ2

1� 4a
3
þ a4

3

if 06 r6 rc

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

where a ¼ sc=sw ¼ rc=r0 is the dimensionless radius of

the plug flow region, sc the yield shear stress, sw the wall

shear stress, r the radial coordinate, rc the yield radius,

and um the mean value of velocity.

The equation energy and associated boundary con-

ditions are given by

qcpu
oT
ox

¼ k
r
o

or
r
oT
or

	 

þ lp

du
dr

� �2

� sc

du
dr

ð2Þ

oT
or

����
r¼0

¼ 0;
oT
or

����
r¼r0

¼ qwðxÞ
k

ð3Þ

T ðr; x ¼ 0Þ ¼ T0ðrÞ ð4Þ

where q, k, lp and cp are the density of fluid, thermal

conductivity, the plastic viscosity, and the specific heat

at constant pressure, respectively.

The condition that leads to an asymptotic thermally

developed region in the case of the forced convection

problem described above, is defined by [16]

lim
x!þ1

TwðxÞ � T ðr; xÞ
TwðxÞ � TbðxÞ

¼ lim
x!þ1

Hðr=r0; x=2r0PeÞ

¼ H1ðr=r0Þ ð5Þ

where TwðxÞ and TbðxÞ are the wall temperature and the

bulk temperature, respectively, Pe is the Peclet number,

and H1ðr=r0Þ is the asymptotic dimensionless tempera-

ture which is a continuous and differentiable function of

r. The bulk value of an arbitrary function gðr; xÞ is de-

fined as

gbðxÞ ¼
2

umr0

Z r0

0

gðr; xÞuðrÞrdr ð6Þ

If condition (5) is holds, the asymptotic value of the

Nusselt number Nu1 exists [16] and is given by

lim
x!þ1

Nu ¼ 2r0 lim
x!þ1

oT
or

��
r¼r0

TwðxÞ � TbðxÞ
¼ �2r0

dH1

dr

����
r¼r0

¼ Nu1 ð7Þ

By the same proof presented in Ref. [10], it is easy to

check that the boundary value problem, expressed by

Eqs. (2)–(4) has a unique solution, and both the

asymptotic behaviour of the temperature field and of the

Nusselt number are independent on the temperature

distribution in the inlet section.

By introducing the dimensionless quantities

X ¼ x
2r0Pe

; R ¼ r
r0
; UðRÞ ¼ uðrÞ

um

; h ¼ k
T � T0b

lpu2
m

ð8Þ

Eqs. (2) and (3) can be rewritten in the dimensionless

form

o

oR
R
oh
oR

	 

¼ RU

4

oh
oX

þ 4a
1 � 4a=3þ a4=3

R
dU
dR

� R
dU
dR

� �2

ð9Þ

oh
oR

����
R¼0

¼ 0;
oh
oR

����
R¼1

¼ 1

2BrðX Þ ð10Þ

where BrðX Þ is a local Brinkman number defined as

BrðX Þ ¼
lpu

2
m

ð2r0ÞqwðxÞ
ð11Þ

Integrating Eq. (9) over the interval 06R6 1 and em-

ploying Eq. (10) yields

ohb

oX
¼ 4

BrðX Þ þ
32

1� 4a=3þ a4=3
ð12Þ

where hbðX Þ is the bulk value of the dimensionless

temperature hðR;X Þ.

3. Asymptotic behaviour of the temperature field

In this work, the asymptotic temperature field and

the asymptotic Nusselt number are evaluated by con-

sidering three classes of functions BrðX Þ which yield a

thermally developed region.

First case: The axial distributions of wall heat flux are

such that

lim
X!þ1

BrðX Þ ¼ �1 ð13Þ

Eq. (13) is satisfied for axial distributions of wall heat

flux, which tend to zero when X ! þ1. These distri-

butions have a form of polynomial fractions with degree

of the numerator lower than the degree of the denomi-

nator, or the exponentially decreasing functions. The

solution of Eqs. (9) and (10) (separated solution due to

the non-homogeneous boundary conditions), for large

value of X , can be written as [10]

hðR;X Þ ¼ hbðX Þ þ f ðRÞ ð14Þ
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where f ðRÞ is a continuous and differentiable function

of R.

By substituting Eq. (14) in Eqs. (9) and (10), and by

employing Eqs. (12) and (13), one obtains

d

dR
R

df
dR

	 

¼ 8RU

x
þ 4a

x
R

dU
dR

� R
dU
dR

� �2

ð15Þ

df
dR

����
R¼0

¼ 0;
df
dR

����
R¼1

¼ 0 ð16Þ

where x ¼ 1� ð4a=3Þ þ ða4=3Þ.
The integration of Eq. (15), by taking into account of

the continuity of f ðRÞ in R ¼ a and of the vanishing bulk

value of f ðRÞ, and by employing Eqs. (5), (8) and (14),

one obtains a following asymptotic temperature field

H1ðRÞ ¼
f ð1Þ � f ðRÞ

f ð1Þ ð17Þ

H1ðRÞ ¼

2 � 4R2

x
1� R2

2
� 2a 1� 2R

3

� �� �
� 2a4

3x

if a6R6 1

2 � 4R2ð1� aÞ2

x
if 06R6 a

8>>>>>>><
>>>>>>>:

ð18Þ

Eqs. (7) and (18) yield a vanishing asymptotic value of

the Nusselt number

Nu1 ¼ � 2
dH1

dR

����
R¼1

¼ 0 ð19Þ

Other authors found this result in the Newtonian fluid

case [7] and in the power-law non-Newtonian fluid case

[10].

Fig. 1 represents the evolution of the asymptotic

temperature field H1ðRÞ for various values of the core

radius a, when the Brinkman number tends to �1, for

large values of X . It should be noted that the asymptotic

temperature profile, which is given by the Eq. (18) in-

creases with a.
Second case: The axial distributions of wall heat flux

are such as

lim
X!þ1

BrðX Þ ¼ Br1 ð20Þ

and, if Br1 ¼ 0

lim
X!þ1

1

BrðX Þ
dBrðX Þ

dX
¼ 0 ð21Þ

where Br1 is the asymptotic Brinkman number, and is a

real number.

Conditions (20) and (21) are checked by uniform wall

heat flux distributions, and when qwðX Þ is given by:

polynomial functions, logarithmic functions, rational

functions where the degree of the numerator is greater

than or equal to the degree of the denominator, . . . etc.
Under these conditions, there exists an asymptotic fully

developed region for the temperature field, and the so-

lution of the Eqs. (9) and (10), for large values of X , is

expressed by

hðR;X Þ ¼ hbðX Þ þ f ðRÞ
BrðX Þ ð22Þ

Substituting Eq. (22) in Eqs. (9) and (10) and taking into

account Eqs. (12), (20) and (21) gives

d

dR
R

df
dR

	 

¼ RU 1

�
þ 8Br1

x

�

þ 4a
x

R
dU
dR

 
� R

dU
dR

� �2
!
Br1 ð23Þ

df
dR

����
R¼0

¼ 0;
df
dR

����
R¼1

¼ 1

2
ð24Þ

The integration of Eq. (23), by taking into account of

the continuity of f ðRÞ in R ¼ a and of the vanishing bulk

value of f ðRÞ [17] (for uniform inlet temperature), and

on account of Eqs. (5), (8) and (22), the asymptotic

temperature field H1ðRÞ can be written as

where

C1 ¼ � a4

18x2
lnðaÞ � Br1

x2
1

�
� 4a

3
� a4

3

�
� 1

x2

7

48

�

� 257a
630

þ 38a2

135
� a4

8
þ 5a5

27
þ a6

15
� 2a7

15
� 13a8

1008

�

because x ¼ 1� ð4a=3Þ þ ða4=3Þ

f ð1Þ ¼ 1

x2

11

48

�
þ xBr1

�
� a8

18x2
lnðaÞ þ a

x2

�
� 2

45

þ 62a
135

þ a3

4
� 10a4

27
� a5

15
þ 2a6

15
þ 13a7

1008

�

The Eqs. (7) and (25) yield the asymptotic value of the

Nusselt number

H1ðRÞ ¼
f ð1Þ � f ðRÞ

f ð1Þ

¼
1 � 1�2a

2x 1þ 8Br1
x


 �
R2 þ 4a

9x 1þ 12Br1
x


 �
R3 � 1

8x 1þ 16Br1
x


 �
R4 þ a4

6x lnðRÞ þ C1

h i
f ð1Þ½ ��1

if a6R6 1

1 � 1
2x 1þ 8Br1

x


 �
ð1� aÞ2R2 � a4

6

� �
þ a4

6x lnðaÞ � 7
12


 �
þ C1

h i
f ð1Þ½ ��1

if 06R6 a

8<
: ð25Þ
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Nu1 ¼ � 2
dH1

dR

����
R¼1

¼ 1

f ð1Þ ð26Þ

Eq. (26) shows that the asymptotic value of the Nusselt

number Nu1 depends only on the core radius a and on

the asymptotic value Br1 of the Brinkman number.

When a ¼ 0 (Newtonian flow case), the expression of the

asymptotic value of Nu coincides with that of Basu and

Roy [6] and of Zanchini [7] in the case of uniform wall

heat flux with viscous dissipation, such as

Nu1 ¼ 48

11þ 48Br1
ð27Þ

On the other hand, if Br1 ¼ 0, Eq. (27) is reduced to the

well known Newtonian value of Nu1 ¼ 48=11 ¼ 4:3636
in the case of uniform wall heat flux and negligible vis-

cous dissipation [1].

Fig. 2 depict the asymptotic behaviour of the di-

mensionless temperature field for various values of the

core radius a and for Br1 ¼ �1. This figure shows that

there are values of Br1 for which the asymptotic values

of Nu1 are negative. Indeed, the value of Br1, which

produces a singularity in the asymptotic value of Nu, is

given by

BrðsÞ1 ¼
� 11

48

x
þ a8 lnðaÞ

18x
� a

x

�
� 2

45
þ 62a

135
þ a3

4

� 10a4

27
� a5

15
þ 2a6

15
þ 13a7

1008

�
ð28Þ

Fig. 3 represents the evolution of BrðsÞ1 with respect to a,
and shows that this value is always negative for any

value of a. For 06 a6 0:85, one has �126BrðsÞ1 < 0;

and for aP 0:85, the value of BrðsÞ1 decreases suddenly

down to a value of about )120. Table 1 presents the

asymptotic values of the Nusselt number for various

values of the core radius a, and shows that these values

coincide with those reported by Zanchini [7] and by

Θ

Fig. 1. Variation of fully developed temperature profile with

respect to a.

Fig. 2. Evolution the H1ðRÞ for various values of a and

Br1 ¼ �1.

0.0 0.2 0.4 0.6 0.8 1.0

-120

-80

-40

0

Fig. 3. Variation of BrðsÞ1 versus the core radius a.

Table 1

Values of Nu1 evaluated by Eq. (26) and comparison with those

of Barletta [10] and Zanchini [7] in the Newtonian case (a ¼ 0)

a Br1

)1 0 1

0 )1.2973 4.3636 0.8136

0.1 )1.0767 4.4443 0.7253

0.2 )0.8749 4.5528 0.6320

0.3 )0.6914 4.6977 0.5342

0.4 )0.5264 4.8883 0.4331

0.5 )0.3804 5.1357 0.3313

0.6 )0.2546 5.4543 0.2328

0.7 )0.1505 5.8635 0.1431

0.8 )0.0706 6.3911 0.0691

0.9 )0.0187 7.0854 0.0187

Zanchini [7] )1.2973 4.3636 0.8136

Barletta [10] )1.2973 4.3636 0.8136
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Barletta [10] in the Newtonian case (a ¼ 0). It is also

noticed that when Br1 ¼ 0 (negligible viscous dissipa-

tion), the value of Nu1 is an increasing function of a.
However, if Br1 > BrðsÞ1 the value of Nu1 is a decreasing

function of a (Fig. 4), whereas for Br1 < BrðsÞ1 the

asymptotic value of the Nusselt number is an increasing

function of a (Fig. 4).

Third case: The axial distributions of wall heat flux

are such as

lim
X!þ1

BrðX Þ ¼ 0 ð29Þ

and

lim
X!þ1

1

BrðX Þ
dBrðX Þ

dX
¼ �2b ð30Þ

where b is a non-vanishing positive real number.

Eq. (29) shows that the effect of viscous dissipation is

negligible in the thermally developed region. Eqs. (29)

and (30) are satisfied by the axial wall heat flux distri-

bution which tends to infinity when X ! þ1 and which

behave asymptotically as QðX Þe2bX , where QðX Þ is a

polynomial function, rational function where the degree

of the numerator is greater than or equal to the degree of

the denominator,. . .etc. Therefore, for each of these

distributions the dimensionless temperature field for

large value of X can be expressed by Eq. (22).

By substituting Eq. (22) in Eqs. (9) and (10) and by

taking into account of the Eqs. (12), (29) and (30), one

obtains

d

dR
R

df
dR

	 

¼ RU

2
ð2þ bf Þ ð31Þ

df
dR

����
R¼0

¼ 0;
df
dR

����
R¼1

¼ 1

2
ð32Þ

Eq. (31) can be reduced to a first-order differential

equation by employing the following transformation

f ðRÞ ¼ 1

b
C exp

Z R

0

bðR0ÞdR0
	

� 2



ð33Þ

where C is a constant determined by the boundary

condition at R ¼ 1 and bðRÞ is a continuous and differ-

entiable function of R.

Substituting Eq. (33) into Eq. (31), gives

R
db
dR

þ bþ Rb2 ¼ RbU
2

ð34Þ

Eqs. (32) and (33) becomes then

bð0Þ ¼ 0 ð35Þ

C ¼ b
2bð1Þ exp

�
�
Z 1

0

bðR0ÞdR0
�

ð36Þ

Eq. (35) determines the boundary condition of Eq. (34)

and Eq. (36) determines the constant C. Eq. (34) with its

boundary condition (35) will be integrated numerically

using the fourth-order Runge–Kutta method. The con-

stant C and the function f ðRÞ will be computed by the

integration method of Simpson.

The function H1ðRÞ is evaluated by the following

expression

H1ðRÞ ¼ f ð1Þ � f ðRÞ
f ð1Þ ð37Þ

Taking into account Eqs. (7), (32), (33), (36) and (37),

the asymptotic value of Nu is expressed by

Nu1 ¼ � 2
dH1

dR

����
R¼1

¼ 2bbð1Þ
b � 4bð1Þ ð38Þ

The numerical method used requires about 106 subdi-

visions of the interval 06R6 1. The asymptotic values

evaluated by the fourth-order Runge–Kutta method are

compared with those of Shah and London [1], Piva [5]

and Barletta [10] in the Newtonian fluid case (a ¼ 0)

with an exponentially varying wall heat flux (see Table

2). We note that the comparison between our theoretical

results and those found in the literature in the Newto-

nian case is very satisfied. Fig. 5 represents the variation

of Nu1 versus b for different values of a. This figure

shows that for b fixed, Nu1 increases with a, and if a is

fixed, Nu1 increases with b (see Table 3).

The effect of the core radius a on the evolution of the

asymptotic temperature profile for different values of b
is presented in Fig. 6(a)–(c). One note that for large

values of b such as b ¼ 1000 (Fig. 6(c)), the variation of

H1ðRÞ does not vary significantly with respect to a, i.e.

the effect of yield stress becomes negligible.

-4 -2 0 2 4

-20

-10

0

10

20

a = 0, 0.2, 0.4

a = 0, 0.2, 0.4

Fig. 4. Variation of Nu1 versus Br1 for different values of a.
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4. Uniform wall temperature and convective boundary

conditions

4.1. Constant wall temperature

If Tw ¼ constant, and by taking into account of the

Eq. (8), the wall heat flux is expressed by

qw ¼ kNu
2r0

ðTw � TbÞ ¼
lpu

2
m

2r0
Nuðhw � hbÞ ð39Þ

Eqs. (11), (12) and (39), for a fully developed tempera-

ture field Nu ¼ Nu1 yield

hw � hb ¼ hw expð�4Nu1X Þ � 8

Nu1x
ð40Þ

Substituting Eq. (40) into Eq. (39), qw is expressed in the

fully developed region by

qw ¼
lpu

2
mNu1
2r0

hw expð�4Nu1X Þ �
4lpu

2
m

r0x
ð41Þ

Taking into account Eq. (41), it is easily checked that the

condition (20) is satisfied with the non-vanishing values

of Br1 such as

Br1 ¼ �x
8

ð42Þ

However, H1ðRÞ and Nu1 are given, respectively, by

Eqs. (25) and (26), with Br1 expressed by the Eq. (42)

Table 2

Comparison between the asymptotic values of Nu with those of

the literature for a ¼ 0 (Newtonian fluid)

b Present

work

Shah and

London [1]

Piva [5] Barletta

[10]

1 4.4475 – 4.4475 4.4475

5 4.7596 4.77 4.7596 4.7596

10 5.1066 5.11 5.1067 5.1067

20 5.6973 5.71 5.6974 5.6974

30 6.1925 6.21 – 6.1925

40 6.6221 6.64 – 6.6222

50 7.0040 7.02 7.0040 7.0040

60 7.3492 – – 7.3493

70 7.6654 – – 7.6655

80 7.9581 – – 7.9582

90 8.2312 – – 8.2313

100 8.4875 – 8.4877 8.4877

200 10.4844 – – 10.4846

500 14.0950 – – 14.0951

1000 17.7492 – 17.7495 17.7495

10 000 38.6601 – 38.6607 38.6607

Table 3

Asymptotic values of Nu for various values of b and a

b a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 4.528 4.637 4.782 4.974 4.970 5.546 5.961 6.502 7.211

5 4.841 4.951 5.098 5.293 5.551 5.888 6.331 6.917 7.704

10 5.189 5.301 5.451 5.652 5.919 6.273 6.746 7.384 8.264

20 5.784 5.900 6.057 6.268 6.552 6.936 7.461 8.192 9.238

30 6.283 6.404 6.568 6.789 7.088 7.498 8.067 8.877 10.072

40 6.716 6.843 7.013 7.243 7.556 7.988 8.596 9.476 10.807

50 7.102 7.233 7.409 7.648 7.974 8.426 9.068 10.010 11.465

60 7.451 7.586 7.768 8.015 8.353 8.823 9.496 10.494 12.064

70 7.770 7.901 8.097 8.351 8.700 9.188 9.889 10.939 12.616

80 8.066 8.209 8.402 8.664 9.023 9.526 10.253 11.351 13.128

90 8.342 8.489 8.687 8.955 9.324 9.842 10.593 11.735 13.607

100 8.601 8.752 8.954 9.221 9.608 10.139 10.913 12.096 14.058

200 10.621 10.801 11.042 11.370 11.822 12.462 13.409 14.911 17.584

500 14.274 14.510 14.826 15.254 15.845 16.686 17.943 19.998 23.966

1000 17.973 18.268 18.661 19.194 19.929 20.976 22.548 25.150 30.393

10 000 39.145 39.781 40.627 41.771 43.351 45.605 49.011 54.730 66.916

0 200 400 600 800 1000

5

10

15

20

25

a = 0, 0.2, 0.4, 0.6, 0.8

Fig. 5. Variation of Nu1 versus b for various values of a.
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H1ðRÞ ¼

1 �
� 2a

9xR
3 þ 1

8xR
4 þ a4

6x lnðRÞ þ C1

h i
f ð1Þ

if a6R6 1

1 �
a4

6x lnðaÞ � 7
12

� �
þ C1

h i
f ð1Þ

if 06R6 a

8>>>>>>>>><
>>>>>>>>>:

ð43Þ

Nu1 ¼ � 2
dH1

dR

����
R¼1

¼ 1

f ð1Þ ð44Þ
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C1 ¼ � 1

x2

a8 lnðaÞ
18

	
þ 1

48
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In the Newtonian fluid case (a ¼ 0), one finds Nu1 ¼
48=5. This value coincides with the results reported in

the literature [1,6,7,10]. Moreover, the asymptotic Nus-

selt number Nu1 and the asymptotic temperature field

H1ðRÞ depend only on the core radius a.

4.2. Convective boundary conditions

In this case, the duct wall exchanges the heat by

convection with an external fluid having a uniform ref-

erence temperature, Tf , and a uniform convection coef-

ficient he.

Introducing the Biot number, Bi ¼ her0=k, the wall

heat flux is expressed as

qw ¼ kBi
r0

ðTf � TwÞ ¼
lpu

2
mBi

r0
ðhf � hwÞ ð45Þ

Taking into account Eqs. (11), (39) and (45), the

Brinkman number is given by

BrðX Þ ¼ Nuþ 2Bi
2NuBiðhf � hbÞ

ð46Þ

The substitution of Eq. (46) into Eq. (12), in the fully

developed region, Nu ¼ Nu1, yields

hf � hbðX Þ ¼ hf exp

�
� 8Nu1Bi

Nu1 þ 2Bi
X
�
� 4ðNu1 þ 2BiÞ

Nu1Bix

ð47Þ

Θ Θ

Θ

Fig. 6. Evolution the H1ðRÞ for various values of b: (a) b ¼ 10, (b) b ¼ 100, (c) b ¼ 1000.
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By employing Eqs. (46) and (47), one obtains

BrðX Þ ¼ 2Nu1Bi
Nu1 þ 2Bi

hf exp

�	
� 8Nu1Bi

Nu1 þ 2Bi
X
�
� 8

x


�1

ð48Þ

For large values of X , it is easy to check that BrðX Þ given

by Eq. (48) is reduced to that given by Eq. (42) as in the

case Tw ¼ constant. Consequently, H1ðRÞ and Nu1 will

be expressed respectively by Eqs. (43) and (44) and do

not depend on the value of Bi. This can be interpreted as

convective boundary condition with Bi tends to infinity.

By taking into account of Eq. (11), the Eq. (48) ensures

that, when Bi ! 1 the wall heat flux is a finite value.

Therefore, on account of Eq. (45), Tw must tend to Tf .

Fig. 7 describes the asymptotic behaviour of the tem-

perature profile for various values of a. This figure shows

that the gradient of H1ðRÞ increases in the vicinity of the

wall (R ¼ 1) when the core radius a increases. Fig. 8

shows that for 06 a6 0:65, the asymptotic value of the

Nusselt number Nu1 remains always lower than 20,

whereas in the vicinity of a ffi 8, there is a significant in-

crease in the value of Nu1.

5. Conclusion

The fully developed laminar forced convection for a

Bingham plastic in a circular duct is studied with three

types of wall boundary conditions, namely: variable heat

flux distributions, constant wall temperature and con-

vection with an external isothermal fluid. The effects of

viscous dissipation and the yield stress on the asymptotic

temperature profile and the asymptotic Nusselt number

are analysed.

For the axial wall heat flux distributions, three cases

were considered. When the axial wall heat flux distribu-

tions qwðxÞ tends to zero for x ! þ1, i.e. the local

Brinkman number BrðX Þ tends to infinity, (First case),

the results show that the asymptotic value of the Nusselt

number Nu1 is zero. In the second case, where qwðxÞ does

not tend to zero for x ! þ1, while ð1=qwðxÞÞðdqwðxÞ=
dxÞ tend to zero, the asymptotic value of the Nusselt

number is different from zero and depends only on the

asymptotic Brinkman number Br1 and of the core radius

a. Moreover, viscous dissipation and the yield stress play

a predominant role in the determination of the heat

transfer characteristics of thermally fully developed flow.

In addition, the value of Br1 which produces a singu-

larity, for each value of the core radius a, was presented.

In the third case, qwðxÞ tends to infinity when x ! þ1,

while ð1=qwðxÞÞðdqwðxÞ=dxÞ tends to a non-vanishing

positive constant. It has been shown that the effect of

viscous dissipation is negligible in the thermally devel-

oped region. The asymptotic temperature field and the

asymptotic value of the Nusselt number are evaluated

numerically for some values of b and a.
For the boundary conditions of constant wall tem-

perature and convection with an external isothermal

fluid, one leads to same asymptotic values of the Nusselt

number. In particular, it was shown that the asymptotic

value of the Nusselt number in the case of convective

boundary conditions is independent of the Biot number.

The comparison between our theoretical results and

those of the literature in the Newtonian fluid case is

excellent.
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